ソーラーシェアリングを 安全で確実なメンテナ ンス実現!

日射などの周辺環境の影響を受けること により把握しにくい太陽電池の故障を正確 に検知するシステムを開発。 安全で効率のよい再生可能エネルギーの 生産を実現します。 日本大学 理工学部 電気工学科

_{教授} 西川 省吾

日本大学理工学部卒。2011年同学部電気工学科教授。エネルギー工学、電力工学などを専門分野とし、太陽光発電をはじめとする再生可能エネルギー、電力貯蔵・故障検出技術などを研究テーマとしている。国立極地研究所との共同研究として、南極・昭和基地での再生可能エネルギー供給にも取り組む。

ポイント

- ◆ 太陽電池のモニタリングは,通常の赤外線カメラでは日射の 影響や映り込みなどにより,故障箇所の把握が困難
- 周期性のある電圧を印加することで発生する温度変化を二値化して画像モニタリング
 - ➡故障箇所を明確に把握することが可能

こんな研究や開発ニーズに

- 太陽光発電設備の保守点検
- 太陽電池の発電性能や安全性の維持

太陽電池モジュールのバイパス回路開放故障 検出技術~安全なソーラーシェアリングを目指す~ 共同研究先 募集中

日本大学 理工学部 電気工学科 教授 西川 省吾

■ 目的·背景

ソーラーシェアリング

- ・農耕地の上部に太陽電池を設置し、余剰電力を売電しながら、農業を実施する。
- ・太陽電池の出力により、将来的には農業機械の 電動化も促進

太陽電池故障の早期発見

- ・太陽電池モジュール(パネル)を保護するバイパス 回路が開放故障すると、ホットスポット、火災の 危険性あり
- ・赤外線カメラによる通常の観測では見逃す可能性大
- ・他の検出装置よりも、容易に故障位置を検出可能

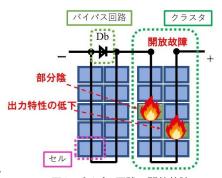


図1 バイパス回路の開放故障 (開放故障区間内の劣化セルで 火災の可能性あり)

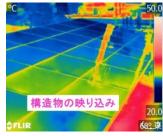


図2 熱画像への外乱 (赤外線カメラの通常の使用 方法では、外乱により熱画像が 正確な温度を表示しない可能 性あり)

■ 原理·方法

故障位置の検出方法

- ・太陽電池ストリング(複数のモジュールを直列接続した回路)に周期性のある電圧を印加(図3参照)
- ・故障箇所(開放クラスタ)に高電圧٧っが印加され温度上昇するが、正常箇所は低電圧٧1で温度変化なし(図4参照)
- ・開放故障箇所の温度変化 は、印加電圧と同じ周波 数で変化するため、映り込 みなど熱画像への外乱を 除去可能
- ・高度な判定技術を不必要 にするため、最終的には 二値化画像にする。

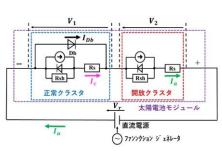


図3 試験回路

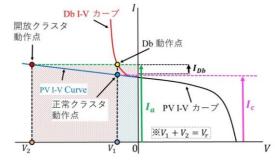


図4 原理(IVカーブ)

▮ 結果・まとめ

- ・赤外線カメラの通常の使用方法での熱画像では、正常箇所と故障箇所の区別がつかない(図5参照)
- ・電圧を印加すると故障箇所の温度が上昇(図6参照)
- ・周期的な温度上昇の閾値を求め二値化することにより、外乱を除去し故障箇所を明確に把握することが可能(図7参照)

外乱(映り込み) ℃ 30.0 5.0

図5 熱画像(印加電圧なし)

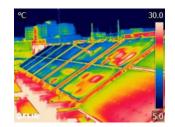


図6 熱画像(印加電圧あり)

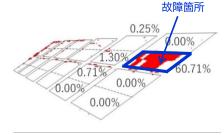


図7 温度上昇の二値化画像

■ 応用分野·用途

ソーラーシェアリング/太陽光発電設備の保守点検

共同研究先 募集中!

日本大学産官学連携知財センター (NUBIC)

E-mail: nubic@nihon-u.ac.jp https://www.nubic.jp